Modélisation et optimisation d’échangeurs de chaleur intégrés en mousse métallique pour le refroidissement de l’électronique de puissance
Résumé :
Il y a plusieurs décennies, l'électronique de puissance (PE) est devenue une discipline importante dans le monde de l'électrotechnique. Grâce aux progrès technologiques réguliers, à savoir l'utilisation de matériaux à "wide band gap" pour les semi-conducteurs, les dispositifs PE sont devenus plus compacts et efficaces, mais cela a malheureusement entraîné une gestion thermique réduite. Ainsi, dans le cadre d’un effort collaboratif entre G2Elab, LEGI et SIMAP, ce travail a étudié l’utilisation de la mousse métallique comme nouvel échangeur de chaleur utilisé dans un système de refroidissement à convection forcée qui peut être intégré dans des modules PE pour un refroidissement supérieur. Les mousses métalliques sont légères, ont de faibles densités, des surfaces spécifiques élevées, une structure à cellules ouvertes et de bonnes propriétés thermiques. Ils sont typiquement classés par leur porosité (ε), leur densité de pores (PPI, pores par pouce) et par le diamètre des fibres solides (dg). Les avantages du transfert de chaleur proviennent delà possibilité d'une surface spécifique accrue par rapport à d’autres échangeurs de chaleur, tels que des micro canaux, et de la microstructure tortueuse qui génère des turbulences d’écoulement et améliore les transferts de convection dans le fluide de refroidissement. Les performances thermiques ont été modélisées en développant un modèle analytique qui considérait les échangeurs de chaleur comme un réseau de résistances en série. Ceci a été réalisé en simplifiant les équations LTNE qui régissent le transfert d’énergie à travers les phases solide et fluide. Le modèle a été initialement comparé aux simulations numériques et aux résultats expérimentaux de la littérature scientifique, où il a bien fonctionné. Comme niveau supplémentaire de validation, un banc d'essai expérimental a été conçu et assemblé in-house. Les performances thermiques ont été vérifiées en utilisant des thermocouples pour mesurer le profil de température des phases solide et fluide, et les propriétés hydrauliques ont été trouvées en mesurant la chute de pression à travers les échangeurs de chaleur. Les résultats analytiques et expérimentaux concordaient bien les uns avec les autres, s’écartant en moyenne de moins de 10%. Le modèle a ensuite été utilisé pour optimiser les propriétés physiques des mousses afin de produire un échangeur de chaleur qui maximise les performances thermiques tout en minimisant la puissance hydraulique requise. Les résultats montrent que pour une perte de charge de 50 kPa, la résistance thermique d’un échangeur de chaleur en mousse métallique est de 0,127 K/W. Les mousses métalliques sont donc un matériau d'échangeur de chaleur viable et le modèle proposé dans ce travail peut être utilisé comme un moyen rapide et peu coûteux d'optimisation des performances.
Auteur |
Joseph GLASS |
Date de publication |
27 Janvier 2021 |
Mots-clés |
Matériaux poreux, optimisation, refroidissement, carbones poreux, mousses métalliques |
♦ La version complète est uniquement disponible pour les adhérents "ESSENTIEL" ou "PREMIUM" du GRETh!
♦ Si vous êtes déjà membre / adhérent il est nécessaire de vous identifiez en cliquant ici.
♦ Si vous n'êtes pas adhérent, vous pouvez consulter l'offre proposée par le GRETh en cliquant ici ainsi que les conditions d'adhésion en cliquant ici.