



# **Principle**

- heat pumps are a renewable energy source because they convert low grade heat present in the ground, water or air into useable heat
- electricity is only used to concentrate the heat, not to produce the heat itself







Typical ground source heat pump system







# Renewable energy source

- like other renewable energy sources such as biomass or solar thermal, it is inexhaustible and located everywhere
- unlike other sources, the process is reversible so high grade heat can be removed thus producing space cooling







The General Depletion Picture









# Why renewable energy sources?

- to reduce electricity usage by replacing direct electric heating by heat pumps
- to replace oil heating systems in homes that are generally located in areas where natural gas is not available
- to reduce the consumption of fossil fuels
- to reduce environmental emissions
- to help prevent climate change





### **Seasonal variation**

- this is not a concern for renewable energy heating sources if they are correctly designed and selected
- in very cold climates, it is best to use the ground or water as the heat source as these vary much less than air temperature
- another option is to mechanically ventilate a dwelling and use a heat exchanger to transfer heat energy from outgoing to incoming air





### **Characteristics**

- mature technology
- range of sizes 1 kW to 8 MW
- room to district heating
- variety of heat sources (or sinks)
- can be used with renewable energy electricity because of the thermal inertia of buildings





# **EU** housing stock

- average life in excess of 100 years
- great variations in heat loss with newer buildings having better insulation
- family size is decreasing
- newer dwellings are smaller
- move from rural to urban areas





# Average heat load with age





# Heat Pumps in Europe Reducing heat loss













| Modelling scenario                                    | Limited conservation | Extended conservation |
|-------------------------------------------------------|----------------------|-----------------------|
| By 2010                                               |                      |                       |
| Energy savings (TWh)                                  | 22                   | 40                    |
| Reduction in CO <sub>2</sub> emissions (million tons) | 11                   | 20                    |
| By 2020                                               |                      |                       |
| Energy savings (TWh)                                  | 46                   | 100                   |
| Reduction in CO <sub>2</sub> emissions (million tons) | 23                   | 50                    |

Annual benefits to society in terms of energy saving and reduction in  $CO_2$  output (millions of tons)







# **Cost-effective sizing**

- calculate heat loss
- consider cost-effective insulation level
- recalculate load duration curve
- size heat pump to cover say 60% of heat loss
- provide an auxiliary heat system for very cold months





### Load/duration curve









# Labelling

- DACH label regional label for Germany, Austria and Switzerland
- EU eco label initiative to label all renewable heating sources
- framework under consideration
- mandatory criteria for all systems such as efficiency, CO2 emissions
- optional criteria which could be system specific such as natural refrigerants, certified installer, heat loss calculation
- possible to influence the choice of criteria at present







### **EU** sales

|                | 2004<br>units | 1992   |
|----------------|---------------|--------|
| Austria        | 5,129         | 800    |
| Czech Republic | 2,400         | 20     |
| Finland        | 12,648        | 100    |
| France         | 17,300        | 4,000  |
| Germany        | 20,636        | 2,000  |
| Sweden         | 100,215       | 15,000 |





### **EU Directives**

- energy performance in buildings –
  requires RES to be considered in design and upgrading of heating system
- energy services
  - Member States to increase energy efficiency by an additional 1% per annum for the next 10 years
- public procurement
  - requirement to tender for a certain proportion of equipment to be energy efficient







#### **Future trends**

- social housing affordable heat becomes more important as energy prices rise
- very well insulated homes is an individual heating system cost-effective?
- availability of oil supplies oil heating is no longer sustainable
- planning permission could be altered to favour renewable energy heating over oil or gas





